

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-9 Issue-01 April 2020

59

Design of Improved Watch dog Timer By using FPGA

M. KULLAYAPPA, P. RADHA, M. SATEESH KUMAR

ASSISTANT PROFESSOR 1,2,3

manthri845@gmail.com, radhasvec@gmail.com, steeshkumar9f@gmail.com

Sri Venkateswara Institute of Technology,

N.H 44, Hampapuram, Rapthadu, Anantapuramu, Andhra Pradesh 515722

Abstract— Maximum dependability is required of embedded

systems used in safety-critical applications. Such systems

automatically manage and recover from problems related to

operating time using external watchdog clocks. When it

comes to functionality, most of the external watchdog clocks

on the market utilise extra circuitry to change their timeout

durations and provide very limited functionalities. An

enhanced adjustable watchdog timer which may be used in

safety-critical applications is described in this work along

with its architecture and design. The watchdog's resilience is

enhanced by its several built-in fault detection systems. It may

be used to monitor the activities of any processor-based real-

time system since the capabilities and operations are relatively

broad.In addition to discussing the suggested watchdog timer,

this article delves into the development of a Field

Programmable Gate Array (FPGA).As a result, the system

cost is reduced and the design is readily adaptable to diverse

applications. First, by looking at the simulation data, we can

see how well the suggested watchdog timer detects and reacts

to problems.By manipulating the software to introduce errors

while the processor is running, the design is tested on real-

time hardware, and the results are analysed.

INTRODUCTION

The most reliable system is needed for situations where

human damage might result from a system crash. For these

systems to function safely, they need fault tolerance

techniques that can handle the unexpected. It is expected that

these systems can also recover from crashes without any

intervention from humans. As soon as a problem arises, these

fault tolerance mechanisms kick in to fix it and keep the

system running as smoothly as possible [1]. System

redundancy is one approach to fault tolerance. Improving the

system's overall dependability is possible with the use of

numerous copies of its important components [2].But,

depending on the design, this enhanced system dependability

is accomplished by increasing the complexity of both the

hardware and the software.

The watchdog is a low-cost, high-performance method for

identifying and addressing operation-time related problems in

fault-tolerant system development [3]. A hardware

component known as a watchdog timer (WDT) keeps an eye

on the system's activities and triggers certain actions when a

malfunction is detected [4]. The CPU must regularly reset the

timer, which is a common component. A secondary sign of an

issue with the monitored system is when the WDT expires [5].

Restarting the system is decided upon when the CPU is unable

to reset the watchdog.

system, or restore it to a known-good condition from which it

may recover; this will stop any more harm from happening.

Both on-chip and off-chip versions of the watchdog are

possible. Although it is not a strong solution, an internal

watchdog may simplify and lower the cost of the hardware.A

runaway code may deactivate the watchdog timer, and the

software has control over it during runtime [3]. Also, the

watchdog can't detect hardware problems if the crystal fails

since it's linked to the CPU clock [6]. External watchdogs are

essential when an embedded system's dependability is

critical.An external watchdog does not share its clock with the

CPU and operates independently. As a result, fault-tolerant

system topologies are much stronger, beyond the constraints of

internal watchdogs [7].

One kind of standalone watchdog timer microchip is less

generic since it only has predefined timeout intervals. The

timeout durations may be adjusted with the use of an extra set

of devices that use external circuitry. Despite its practicality,

this approach raises system costs and complicates hardware.

By implementing the watchdog functionality inside a Field

Programmable Gate Array (FPGA), the added complexity and

expense of external watchdogs may be mitigated to some

degree.To provide the required system functionality, many

contemporary embedded systems include one or more FPGA

chips [8]. By incorporating the watchdog timer into an FPGA,

a reliable and effective solution may be achieved.

For real-time control systems, Giaconia et al.[9] investigated

the possibility of implementing a bespoke concurrent watchdog

processor on FPGA.Instead of including a CPU timer, the

design checked the reasonableness of many variables and the

program's execution. To detect the occurrence of a

malfunction, El-Attar et al. [10] suggested a sequenced

watchdog timer that relies on time registers. Nevertheless, the

defect detection features that were included were restricted,

and there were not many configuration choices to choose from.

The authors of [11] discussed the fundamental ideas of an

FPGA-based multiple-hardware watchdog timer system, but

they kept the watchdog's architecture simple.

This work presents the design and implementation of an

enhanced windowed watchdog timer in FPGA. The

architecture may be realised in FPGA such that the same

watch-dog hardware can be interfaced to multiple systems and

processors with only small alterations to the related HDL code

[8]. For multicore designs, it also makes it possible to

accommodate several watchdog timers.A suggested watchdog

timer is ideal for

embedded systems that must prioritise safety, namely those

that use redundant channels to improve system dependability.

mailto:manthri845@gmail.com
mailto:radhasvec@gmail.com
mailto:steeshkumar9f@gmail.com

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-9 Issue-01 April 2020

60

One solution to the problem of component obsolescence that

plagues many embedded systems, particularly those used in

aerospace and military applications, is to design the WDT as

a reusable IP core [12]. The study delves into the design of

the suggested watchdog timer, including its architecture, fault

detection capabilities, and FPGA implementation.

What follows is an outline of the rest of the paper. The

suggested watchdog timer's design is detailed in the section

that follows. In Section III, we covered the watchdog's built-

in defect detection techniques. The watchdog timer is

implemented in FPGA in Section IV. In section V, we discuss

the simulation results and evaluate the hardware design. The

article is concluded in section VI.

I. PROPOSEDWATCHDOGTIMERARCHITECTURE

A good watchdog will be able to restore the system to a known

state the moment it detects any unusual software mode. It

needs its own clock and the ability to send a hardware reset

signal to any and all peripherals when a timeout occurs [3].

This article proposes a watch-dog timer that runs on a separate

clock and is therefore not reliant on the CPU. During setup,

the programme may specify the window periods, which

follow a windowed watchdog implementation in the

architecture.When the watchdog timer goes out, an alarm goes

off, and after a certain period of time has passed, the system

is reset. The programme may utilise that time to save

important debugging data to a non-volatile memory.

System hangs caused by infinite loops in code execution are

catchable by a typical watchdog timer. Nevertheless, this

watchdog's biggest drawback is that it won't ever notice a fault

condition if the system enters one and keeps resetting the

timer.To rephrase, although a regular watchdog timer is

capable of detecting slow faults, it is unable to detect quick

errors that happen within the watchdog timer period

[13].Nevertheless, this can be handled well by a windowed

design. To prevent a timeout, the watchdog specifies a short

window of time in which it must be reset.This increases the

coverage of mistake detection and protects systems from

operating too quickly or too slowly [14].

Chapter A. I/O Interface and Configuration

As shown in Figure 1, the proposed watchdog timer has an

input-output (I/O) interface. A watchdog failure signal

(WDFAIL) and a reset signal (RSTOUT) are the two possible

outputs from the watchdog. The WDFAIL and RSTOUT

outputs are maintained in an assert and de-asserted state,

respectively, while the SYSRESET input is low. A

configuration register with the bit fields specified as shown in

the picture is also part of the design. In addition to providing

status information, the register allows for modifications to the

watchdog's settings. Resetting and servicing the device are

done using the WDRST and WDSRVC fields, respectively.

security dog.The configuration register is automatically

updated with the current state of the INIT input and the

WDFAIL output.

If there is a watchdog failure mode, it is recorded in the

FLSTAT field, and the service window status is held in the

SWSTAT field. You may read and write to the configuration

register using the ENABLE and RD/WR control inputs to the

watchdog timer.Address bus and data bus are represented in

the figure by the signals ABUS and DBUS, respectively.

Figure 1: The configuration register and input/output interface

of the watchdog timer

A service window and a frame window make up the suggested

windowed watchdog concept.The duration of the service

window will be much less than the frame window. The

software has the ability to configure the length of the two

windows in the configuration register after powering up by

writing to the bit fields SWLEN and FWLEN. By design, you

cannot change the settings of the window periods after they

have been established after power-up. If the programme needs

to write to the configuration register again, it will have to go

through a strict unlock process.This prevents runaway code

from inadvertently changing the parameters of the watchdog

window.

The watchdog timer's INIT input is used to initialise the service

window. Assuming the fail flag (WDFAIL) is not set to active,

the service window will be initiated by a high-to-low transition

on this input. To avoid a timeout, the CPU must service the

watchdog during the service window. The configuration

register's watchdog service (WDSRVC) field is used to service

the watchdog timer. The service window will be closed and the

frame window will be started immediately if this part inside of

it has an upward edge. How often the watchdog needs servicing

is defined by the frame window. The embedded control

system's main loop typically uses a somewhat longer time for

this window, and the watchdog is serviced once per cycle [15].

Various methods exist for driving the INIT signal to the

watchdog timer. One approach is to do some sanity tests before

ending the main loop and then trigger the INIT signal [16]. To

prevent the CPU from interfering with the INIT signal

generation, an external interval timer may be used. Here, you

want to make sure the frame window is set for a little longer

than the main Loop execution period. If your embedded system

uses frames to arrange its duties, this configuration option is

tailor-made for you.

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-9 Issue-01 April 2020

61

A. WatchdogTimerInitialization

Onpower-uporresetthewatchdogwakesupinafailed

state, i.e., the WDFAIL output will be asserted high. It is

the responsibility of the software to initialize the

watchdogand keep it running. Fig. 2 illustrates the

waveform for watchdog reset initializationand general

operation.In order tobringthe watchdog to a working

state, first the watchdog reset (WDRST) field in the

configuration register must be toggled from low-to-high.

This, followed by servicing the watchdog insidethe

service window,will de-assertthe WDFAIL flag and

make it operational.Since the frame window is keptlarger

than the system frame time, another service windowwill

start before the current frame window expires. When the

watchdogisagainproperlyserviced,theframewindowwillb

e reinitialized. As long as the frame window counters

keep running, no failures will be flagged by the

watchdog.

Critical real-time embedded systems make use of

redundancy or diversity to achieve fault-tolerance [17].

Asserting the watchdog fail signal on power-up proves to

be a useful feature for such systems. The fail state can be

used to indicate that a particular channel is unavailable

for

computations.Oncethewatchdogisbroughttoahealthystate

, the channel can be declared online. Moreover, during

normal operations if a particular channel is found to be

functioning abnormally, the redundancy management

logic can activatethe watchdog fail of that channel.This

can effectively withdraw the faulty channel from taking

part in any further computations.

II. FAULTDETECTIONFEATURES

Several fault detection mechanisms are built into

the pro- posed watchdog timer in order to improve its

effectiveness in capturing erratic software modes. When

the software fails to service the watchdog inside the

service window, the window expires and sets a fail flag

internally. In this case, the frame window does not

reinitialize and expires upon reaching its terminal value.

On the expiry of the frame windowthe watchdog asserts

its WDFAIL signal,

indicatingafailure.ThisfailuremodeisdepictedinFig.3

When the programme serves the watchdog outside of

the service window, a watchdog fail will occur (Fig. 4)

It is clear that the frame window is immediately terminated

and the WDFAILsignal is asserted due to the invalid service

activity. A positive side effect of this feature is that it will

also cause a watchdog failure if two service activities are

executed consecutively. In this case, the service window will

be closed instantly upon the initial action, and the subsequent

operation will always take place outside of the window.The

result is a watchdog that doesn't work since it's the same as

trying to service it outside of its service window.

If the WDSRVC falling edge happens inside the service

window, as shown in Fig. 5, then... This is likewise seen as

an unauthorised service action, which triggers the assertion

of the watchdog fail signal. This means that prior to the next

service window starting, the programme must de-assert the

WDSRVC signal after servicing the watchdog. With all these

problem detection systems in place, the suggested watchdog

timer will not miss any programme that is behaving

erratically.

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-9 Issue-01 April 2020

62

One possible application for the WDFAIL output of the

watchdog timer is to trigger a fail-safe condition or to alert the

processor to the fault by sending an NMI signal.The watchdog

will assert its RSTOUT output after a preset period of time

after asserting the WDFAIL output. By connecting this signal

to the processor's reset pin, the embedded system may be reset

automatically. Software has a chance to preserve information

that can be useful for troubleshooting during this period. The

watchdog configuration register's FLSTAT field will record

the associated failure mode in the case of a failure. For

debugging reasons, the programme may also try to store this

data to non-volatile memory.

III. Implementing Watchdog Timer in FPGA

The implementation of the suggested watchdog timer in

FPGA is described in this section. This is the schematic of the

watchdog hardware at a high level.Picture 6.The design's

SYSCLK input keeps it timed apart from the processor's

internal clock. The design comes up with the potential sets of

window lengths depending on the application. After powering

on, you may choose these values by writing to the matching

bits in the configuration register: SWLEN for the service

window and FWLEN for the frame window.

After the settings are chosen, the fields for configuring the

window length are automatically locked, meaning that writes

to these bits are disabled. A 16-bit unlock register is included

in the design in case the windowlengths need to be changed

again. The programme has to write the values 0xAAAA and

0x5555, in that sequence, to this register in order to modify

the window widths. The second pattern has to be typed within

10 μs after the first one, and then the programme has 10 μs to

change the length configuration fields. These bits will not be

able to be written to unless these times are satisfied precisely.

When the INIT signal detects a change from high to low, the

service window is initiated.A far slower derived clock

(SWCLK) than the SYSCLK is used by the service window.

The slower clock helps to minimise resource use in FPGA by

lowering the number of comparators needed. The service

window has a primary counter that runs at SWCLK and an

offset up/down counter that is timed by the

SYSCLK.Between the INIT input and the next rising edge of

the SWCLK, the offset upcounter detects the offset (Toffset).

Given that the INIT signal could arrive at any point within the

Tswclk period of the SWCLK, which is asynchronously

driven, this is mandatory. We begin by saving the offset value

and then start the main counter, which will run for (SWLEN

- 1) times. The period of the offset down counter is

Tswclk−Toffset, and it begins after the main counter ends.

The window length may be precisely controlled using this

counting approach.The watchdog configuration register is

also updated on a periodic basis with the operating state of the

service window.

As soon as the watchdog is serviced properly, the counters in

the service window stop and the frame window begins.

starts. For its activities, the frame window additionally makes

use of a derivative slower clock (FWCLK).Similar to the

service window, it contains a primary counter and an offset

up/down counter. This is where the offset up counter comes in

handy; it detects the offset between when the service window

ends and when the FWCLK next rises. Before the offset down

counter is followed, the main counter counts for (FWLEN-1)

times. When the next service window period passes without a

watchdog service action, the frame window counts reset.

A. Resetting the System and Identifying Problems

Figure 7 shows the final state machine (FSM) diagram.

launch of the watchdog's reset initialization and fault detection

techniques. A watchdog failure is indicated by the asserted

WDFAIL output at power-up.In order to initialise the

watchdog timer, a rising edge on the WDRST bit is used. The

WDFAIL output is de-asserted and the window counters begin

running as soon as the service window opens, which is caused

by a rising edge on the WDSRVC bit. The programme will

have to start from the beginning of the startup process all over

again if the watchdog is serviced erroneously. Once the

watchdog is initialised correctly, the WDFAIL signal is de-

asserted.

Even if the watchdog is operational, it will assert the WDFAIL

output again in the event that any of the failure types listed in

section III happens.Notification of the failed status and failure

type is updated in the configuration register.In addition, a reset

counter that runs for a preset period of time is triggered when

the watchdog fail assertion is made. Taking the quantity of

debug information into account will decide the length of the

counter.

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-9 Issue-01 April 2020

63

thatneedstobe stored. Onthe expiryofthecounter,the

WDT asserts its RSTOUT output high. The reset

counter will be non-functional duringpower-

upandtheRSTOUToutputwill

besettolowatthispoint.Whenthewatchdogisinitialize

dfor the first time, the counter gets automatically

enabled.

III. EXPERIMENTALRESULTS

The proposed watchdog timer architecture has

been implemented using VHDL and realized in a FPGA

device. A dedicated 25 MHz clock signal was used for

the SYSCLK input. Possible values for the window

lengths were calculated based on the application and

embedded in the design. In one particular

implementation of WDT for an embedded control

system, the service window duration could be 100μs,

200μs, 400μs or 800μs.The frame window had eight

selectable options - 1ms, 2ms, 5ms and then up to 30ms

in steps of 5ms. The processor could select the desired

window lengths by writing the appropriate value to the

configuration register. A programmable interval timer

was implemented in the FPGA and the expiry of the timer

was used to drive the INIT signal. The WDFAIL output

from the watchdog was used as an

interruptrequesttotheprocessorandtheRSTOUToutputwa

s connected to the reset pin of the processor. The reset

counter wasdesignedtorunfor 3milliseconds. This value

wasarrived after calculating the amount of fault log

information that will have

tobewrittentotheNVRAMpresentinthesystem,inthe case

of a failure. The duration of the reset pulse from the

watchdog timer was also set according to the reset input

requirements of the processor.

Theproposedwatchdogtimerdesignhasbeen

simulated using ModelSim software by creating

adequate test benches andrunningtheacceptance test

procedures (ATP).A processor bus function model was

used to access the configuration register and service the

watchdogas per the ATP. Fig. 8 shows the simulated

waveformfor WDT reset initialization. On power-up, the

WDFAILoutput of the watchdog is asserted high to

indicate a failure. It can be seen from the waveform that

the servicewindow opens (SWSTAT=1) when the INIT

signal goes low. Inside the servicewindow, the WDRST

bit is set to high and then the

WDSRVCbitistoggledfromzerotoone.Thisclosesthe

service window immediately and de-asserts the

WDFAIL output.

The functionality of the watchdog for all

possible combi- nations of window lengths were

simulated and verified. Using emulation based fault

injection techniques, faults were introduced in the test

bench models. All the three failure scenarios mentioned

in section III were created andthe response of the design

was analyzed. In all the cases the watchdog detected the

fault, asserted the WDFAIL signal, classified the failure

mode and logged the fault in the configuration register,

before initiating a system reset. The simulated

waveform in Fig. 9 shows the response of the watchdog

timer to an improper service operation. It can be seen

that the watchdog fail signal, WDFAIL, is asserted

within a short time of 81 ns.

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-9 Issue-01 April 2020

64

A. DesignVerificationinFPGA

The design has been synthesisedand

implementedon a MicrosemiProASIC3E

series Flash based FPGA. A Flash

basedFPGAdevicewaschosenforitsgreaterim

munityto

 while yet enabling in-system reprogrammability,

and handling single event upsets (SEUs)[18].Only

1% of the capacity of the chosen device was used

by the implementation, which utilised 648 logic

elements, which is comparable to a 3-input LUT.

There is a little more intricacy in the design

compared to the work in [11]. In this case, the

authors kept the watchdog's architecture basic and

utilised the down counter's expiration to show that

the watchdog failed. In addition, they demonstrated

how to create such many WDTs in a single

FPGA.However, unlike current systems, the one

suggested in this study has a windowed architecture

and includes many defect detection capabilities. It

is also possible to expand the architecture such that

a single FPGA may house several watchdog timers.

Concerning setup possibilities and fault detection

characteristics, the suggested architecture outshines

industry-standard microprocessor supervisory

circuits like MAX693/MAX6323/TPS381X.

A 32-bit NXP microcontroller-equipped real-time

safety-critical embedded system has shown the

design's implementation. System needs informed

the selection of the watchdog window

configurations. For the purpose of design

validation, a software-based fault injection

approach was used. This technique allows one to

change the system state by modifying the software

running on the system [19]. When the CPU neglects

to service the watchdog timer, it usually indicates a

hardware problem. Faulty memory readings or a

software flaw might be the cause of

this.Overloading, intermittent failures, or transitory

errors might cause the CPU to mistime the

maintenance of the watchdog.The CPU servicing

the watchdog too often is another example.These

real hardware failures served as the basis for the

creation of fault injection models.We were able to

enable fault injection in the programme by inserting

sufficient instructions. Invoking them and

simulating different failure situations was done by

raising a hardware exception to the CPU during

runtime.

The watchdog service activity was updated to skip

during programme execution, enabling the frame

window to expire and raise the fail flag for the

watchdog. Additionally, the programme was

designed to switch the WDT outside of the service

window, which resulted in a rapid increase in the

watchdog fail output. In order to satisfy the

watchdog two times in a row, an alternate scenario

was devised. The watchdog and asserteditsfail flag

also saw this right away.After making the

adjustments shown in Figure 5, we were able to see

that the design performed as planned.The INIT input

to the watchdog was finally failed by introducing a

hardware-based fault injection. As a consequence,

the watchdog failed since the service window could

not start, which led to the frame window

expiring.Each of these instances demonstrates that

the suggested watchdog timer accurately identified

the failure mode and recorded it in its configuration

register.Additionally, the system's reset occurred

when the watchdog asserted its RSTOUT output

three milliseconds after the reset counter had been

activated.

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-9 Issue-01 April 2020

65

IV. CONCLUSION
The architecture and design of an enhanced window watchdog timer,

as well as its implementation in

FPGA. The CPU is not involved in the operation of the watchdog

timer, which allows for application-specific parameter adjustment.In
order to identify abnormal software modes early on, the watchdog

incorporates many defect detection mechanisms.It can detect the

kind of failure and record it, which is useful for troubleshooting.

When the watchdog timer detects a failure, it gives the programme
enough time to save the debug information before starting the reset.

The design may be made more versatile and reusable by

implementing it in FPGA. With little overhead, HDL-based designs
may be implemented on a variety of FPGA devices, regardless of

manufacturer.By making little adjustments to the HDL, the same

design may be adapted to many processors and applications. Also,

the problem of component obsolescence in embedded systems with
a lengthy life cycle may be solved by realising the design in FPGA.

There is little hardware resource consumption and the

implementation is simple. Using fault injection methods, the
suggested design was tested in real-time safety-critical embedded

hardware and successfully handled a variety of problems. It handles

errors in this way.

REFERENCES

[1] S. N. Chau, L. Alkalai, A. T. Tai, and J. B. Burt, “Design

of a fault- tolerant COTS-basedbus architecture,” IEEE

TransactionsonReliabil-ity,vol.48,no.4,pp.351–359,Dec.

1999.

[2] V. B. Prasad, “Fault tolerant digital systems,”IEEE

Potentials, vol. 8, no. 1, pp. 17–21, Feb. 1989.

[3] J.Beningo,“Areviewofwatchdogarchitecturesandtheir

application to Cubesats,” Apr. 2010.

[4] A. Mahmood and E. J. McCluskey,“Concurrent error

detection using watchdog processors - a survey,” IEEE

TransactionsonComputers, vol. 37,no.2,pp.160–174, Feb.

1988.

[5] B. Straka, “Implementing a microcontrollerwatchdog

with afield- programmable gate array (FPGA),” Apr. 2013.

[6] J. Ganssle, “Great watchdogs,” V-1.2, The Ganssle

Group,updated January 2004, 2004.

[7] E. Schlaepfer,“Comparison of internaland external

watchdog timers application note,” Maxim Integrated

Products, 2008.

[8] P. Garcia, K. Compton, M. Schulte, E. Blem, and W. Fu,

“An overview of reconfigurablehardware in embedded

systems,”EURASIP Journal on Embedded Systems, vol.

2006, no. 1, pp. 13–13, Jan. 2006.

[9] G. C. Giaconia, A. Di Stefano,and G. Capponi, “FPGA-

based concurrent watchdog for real-time control systems,”

Electronics Letters, vol. 39, no. 10, pp. 769–770, Jun. 2003.

[10] A.M.El-Attar and G.Fahmy, “An improved

watchdogtimer to enhance imaging system reliabilityin the

presenceof softerrors,”inSignalProcessingandInformation

Technology, 2007IEEEInternationalSymposiumon.IEEE,

Dec. 2007, pp. 1100–1104.

[11] M.Pohronska´ andT. Krajcˇovicˇ,“FPGA

implementationofmultiplehardwarewatchdogtimersfor

enhancingreal-timesystemssecurity,”inEUROCON-

InternationalConference on Computer as a Tool (EURO-

CON), 2011 IEEE.IEEE, Apr 2011 pg 1-4

[12] H. Guzman-Miranda,L.Sterpone,M. Violante, M. A.

Aguirre, and M. Gutierrez-Rizo, “Coping with the

obsolescence of safety- or mission critical embedded systems

usingfpgas,”IEEETransactionsonIndustrialElectronics,vol. 58,

no. 3, pp 814-821, 2011

[13] H.AmerandA.Sobeih,“Increasingthereliabilityofthe

Motorola MC68HC11 in the presence of temporary failures,”

in Electrotechnical Conference, 2002. MELECON 2002. 11th

Mediterranean.IEEE, May 2002, ph no. 231-234

[14] A.M.El-AttarandG.Fahmy, “Astudyoffaultcoverage of

standard and windowed watchdog timers,” in Signal Processing

and Communications, 2007. ICSPC 2007. IEEE International

Conference on.IEEE, Nov. 2007, pg no: 325-328

[15] M. Barr, “Introduction to watchdog timers,” Embedded

Systems Design, 2001

[16] N. Murphy, “Watchdogstimers,”Embedded Systems

Programming, p. 112, 2000

[17] F. Afonso, C. A. Silva, A. Tavares, and S. Montenegro,

“Application-level fault tolerance inreal-time embedded

systems,” inIndustrial EmbeddedSystems,2008.SIES

2008.InternationalSymposiumon. IEEE, Jun. 2008, pp 126-133

[18] M. Wirthlin, “High-reliability fpga-based systems:

Space,high-energyphysics,andbeyond,”Proceedingsofthe

IEEE, vol. 103, no. 3, pp 379-389, 2015

[19] H. Ziade, R. A. Ayoubi, R. Velazco et al., “A survey on

fault injection techniques,” The International Arab Journal of

InformationTechnology, vol.1,no.2, pp 171-186, jul 2004.

